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Abstract. Entomofauna are essential for agricultural productivity and ecological balance. Understanding 

interactions among pollinators and pests is key to sustainable agriculture. Caterpillars, as pests, damage crops by 

feeding on tissues and spreading diseases, and reducing the yield and its quality. Therefore, early detection of 

caterpillars is essential for agriculture, it can be achieved using artificial intelligence embedded into agrobots or 

unmanned aerial vehicles following the concept of precision farming. This study introduces the dataset 

Caterpillar640, which contains 1,300 images of caterpillars, which were captured in natural conditions in Latvia. 

The images are annotated and prepared for artificial intelligence training by using YOLO architecture. The 

collected dataset is publicly available and distributed under an open license, providing valuable resources for 

research in precision farming and biodiversity monitoring. The artificial intelligence was developed using three 

convolution neural network architectures: YOLOv8, YOLOv9 and YOLOv10. The medium-sized models 

(YOLOv8m, YOLOv9m, and YOLOv10m) were selected for the comparison experiment. The comparison showed 

that YOLOv8m achieved the best results 0.887 mAP@0.50, YOLOv9m and YOLOv10m achieved 0.873 

mAP@0.50 and 0.859 mAP@0.50, respectively. The experiment was conducted by repeating the training of each 

neural network model five times. The trained models can be embedded into IoT sensors, agrobots and drones for 

autonomous monitoring of fields, orchards and gardens offering an efficient solution for pest and biodiversity 

monitoring. Additionally, the dataset Caterpillar640 can be applied by researchers to train general convolutional 

neural networks for agricultural tasks combining it with other agricultural datasets that can impact on the accuracy 

of pre-trained models. 
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Introduction 

Entomofauna are essential for agricultural productivity and ecological balance. Diverse insect 

populations increase agroecosystem resilience and support conservation. Understanding interactions 

among pollinators and pests is key to sustainable agriculture. Pollinators – such as bees, butterflies, and 

beetles – enable fruit and seed production through pollen transfer. Approximately 75% of global food 

crops depend on animal pollination, underscoring their importance for food security and biodiversity. 

Insufficient pollination could significantly reduce yields of key crops posing risks to both farmers and 

consumers [1; 2]. 

In contrast, pest insects, including aphids, caterpillars, and beetles, feed on crop tissues and act as 

vectors for disease transmission, causing significant damage that reduces yield and quality while 

impacting global food security, biodiversity, and ecosystem stability. Insect injury to leaves induces 

metabolic and physical changes in host, including altered CO₂ assimilation, increased water loss, and 

modified nutrient concentrations that influence plant growth, yield, and fitness. The environmental and 

economic costs of plant diseases and pests are substantial. This dichotomy highlights the critical need 

for managing insect populations to promote beneficial species in agriculture while mitigating the impact 

of harmful pests [1; 3]. 

The interactions between plants, pathogens, and pests present challenges in agriculture, requiring 

sustainable management strategies. Overreliance on chemical pesticides has led to environmental 

pollution, pesticide resistance, and harm to beneficial organisms. Indiscriminate use contaminates soil 

and water, affecting biodiversity. Sustainable pest control methods are essential to maintaining 

agricultural productivity while preserving ecosystem health [2]. 

The agricultural industry faces growing challenges from rising population demands and climate 

change, which accelerate the spread of pests and pathogens. Smart horticulture offers a solution by 

integrating publicly available data, sensor inputs, and decision-making systems. This study enhances 

sustainable pest management by combining technology and ecology, focusing on early detection of 

caterpillars by using artificial intelligence. The early detection is achieved through the application of 

drones and agrobots, which continuously monitor fields and orchards. Automation provides advantages 

over human monitoring, including faster and more consistent coverage of large areas. Considering 

precision farming principle, this approach allows human focuses on only areas where pests are detected, 
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optimizing human resources rather than conducting broad and time-consuming inspections. Also, 

agrobots will be capable of processing pests autonomously without human involvement in the future. 

Lima et al. (2020) presented the comprehensive review of automatic insect pest detection techniques 

[4]. The design of an autonomous early warning system was described by Liao et al. (2012) [5] and On 

and Abubacker (2024) [6]. The system consists of a monitoring sensor or smart insect trap, insect 

recognition using artificial intelligence, local (edge-computing) or remote (cloud solution), wireless 

communication, warning and decision support software. 

The modern development of artificial intelligence is based on the usage of annotated datasets and 

application of robust architectures. The most popular object detection architecture is YOLO (You Only 

Look Once). YOLO is a real-time object detection solution introduced by Redmon et.al. (2016) [7]. It 

was introduced in 2015 and since then it has been continuously improved by large groups of people. 

Each model comes with some benefit that outperforms previous models, for example, YOLOv8 has 

improved architecture for work with small objects [8], that is often important for agriculture domain. 

For example, On and Abubacker (2024) trained insect detection neural networks using the dataset with 

29 species of insect pests and three architectures YOLOv8, YOLOv9 and YOLOv10 [6]. Meanwhile, 

Tetila et al. (2024) applied the dataset with 12 species and trained YOLOv3 [9]. 

In this study a new dataset called Caterpillar640 is presented. Caterpillar640 includes the annotated 

natural images of caterpillars. In this article, three YOLO architectures will be experimentally compared: 

YOLOv8 [10], YOLOv9 [11] and YOLOv10 [12]; with a goal to find effective architecture for 

caterpillar detection. The experiment showed the next results with the dataset Caterpillar640: 

YOLOv8m achieved the best accuracy 0.887 mAP:50, but YOLOv9m and YOLOv10m achieved 0.873 

mAP:50 and 0.859 mAP:50 respectively. 

Materials and methods 

This study was a pilot experiment to understand the specifics of domain and select experimentally 

the most appropriate YOLO architecture. The team collected all species of caterpillars, as the artificial 

intelligence was trained to detect caterpillars in general. However, the future dataset must be fine-

grained to improve detection accuracy and divide caterpillars on pests and pollinators (e.g. butterflies). 

The dataset was called “Caterpillar640”. The images were collected manually using mobile phones. 

Image annotation was done using a web tool “makesense.ai”. A single category “caterpillar” was 

labelled independently on the species. The images were cropped from original images (3000x4000px) 

to 640x640px resolution images, which are optimal for the pretrained YOLO models. The images, which 

did not contain caterpillars, were removed. In the result, the dataset contains 1300 annotated images. 

The examples of the images are presented in Fig. 1. The dataset Caterpillar640 is available under CC-

BY4.0 license in Kaggle [13]. 

 

Fig. 1. Examples of the images from Caterpillar640 
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When the dataset was prepared, the actual YOLO architectures – YOLOv8, YOLOv9, and 

YOLOv10 – were selected at the time of the experiment. The middle size models pretrained on COCO 

dataset: YOLOv8m, YOLOv9m and YOLOv10m, were applied in the experiment as the trade-off 

between an accuracy and a latency. The training of neural networks was completed using GigaByte 

GeForce RTX™ 2060 WINDFORCE OC 6G with 6GB VRAM. The default augmentation of 

frameworks was used for model training. 

Before training of YOLO models, 10% of the original dataset (130 images) was removed and saved 

as a testing dataset. The testing dataset is used to understand the accuracy in real-life. The remaining 

images were randomly divided into training and validation datasets for each of the training attempt using 

the random shuffle method (using Python script). This process was repeated five times for each YOLO 

model selected for the experiment. The division was 80% (936 images) for the training dataset and 20% 

(234 images) for the validation dataset. YOLOv8m, YOLOv9m and YOLOv10m models were trained 

separately, leading to the creation of five distinct trained models for each architecture. It was done to 

construct a box-plot diagram and understand the robustness of accuracy dependent on random training 

factors. 

Results and discussion 

The experiment showed that YOLOv8m achieved the best results, 0.887 mAP:0.50 and 0.634 

mAP:0.95. Meanwhile, YOLOv9m and YOLOv10m achieved 0.873 mAP:0.50 and 0.859 mAP:0.50 

respectively (see Fig. 2 and Table 1). The model YOLOv8m provided the most stable results, but the 

lowest results are presented by YOLOv9m. 

 

Fig. 2. Accuracy of YOLO models trained on Caterpillar640 (testing dataset) 

Table 1 

Accuracy of YOLO models trained on Caterpillar640 (testing dataset) 

Model Accuracy Min Mean Median Max 

YOLOv8m mAP@0.50 0.853 0.866 0.864 0.878 

YOLOv9m mAP@0.50 0.819 0.843 0.847 0.860 

YOLOv10m mAP@0.50 0.825 0.846 0.852 0.857 

YOLOv8m mAP@0.50:0.95 0.612 0.624 0.623 0.634 

YOLOv9m mAP@0.50:0.95 0.558 0.592 0.598 0.605 

YOLOv10m mAP@0.50:0.95 0.596 0.619 0.625 0.631 

On and Abubacker (2024) obtained comparable results with insect detection: YOLOv8-10 showed 

the range 0.881 – 0.884 mAP@0.50 and 0.629 – 0.643 mAP@0.50:0.95; with the baseline models. 

However, if the models are specially tuned, the accuracy can achieve 0.951 – 0.967 mAP@0.50 and 

0.733 – 0.771 mAP@0.50:0.95 [6]. The simple increase of dataset is not an effective solution to improve 

the accuracy of models. Apeinans (2024) studied the impact of the dataset size on the accuracy of 

YOLOv8n [14]. His experiment showed that the maximal accuracy increase is obtained within the first 

500 images. Meanwhile, the addition of new category provides more sufficient accuracy increase, if the 

size of the dataset is larger than 500 images. Therefore, the fine-grained dataset can be an effective 

solution to improve accuracy. Another approach, YOLO models can be pretrained on the large domain 

dataset like IP102 [15].  
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Caterpillar640 dataset contains only one category “caterpillar”. The future research should be 

focused on the granularity of the dataset collecting and annotating pest species of caterpillars. The 

autonomous monitoring of caterpillars requires overcoming challenges like their concealment in foliage, 

placement in the ground, or small size. Fig. 3 illustrates the conceptual framework for categorizing 

caterpillar species based on the detection methods using computer vision.  

 

Fig. 3. Detection methods of caterpillar using computer vision 

Regarding Latvia, the caterpillars, which can be directly detected in visible locations, are leaf-

feeding caterpillars like Cone pitch moth (Argyroploce variegana), Turnip sawfly (Athalia rosae) or 

Currant sawfly (Nematus ribesii). The detection of caterpillars, which are in the ground or in product, is 

more complex due to their invisible state. However, they can be detected through the external symptoms 

or adult specimens (distributors). For example, the larvae of the green pug moth (Pasiphila rectangulata) 

damage pear buds, leaves, and flowers. They precisely weave both edges of the leaves together from the 

petiole to the tip and feed within the woven structure. The larvae of Phytomyza horticola mine legume 

leaves beneath the leaf epidermis. As the larva grows, the mines expand and spread in various directions. 

The larvae of the pear midge (Contarinia pyrivora) damage the young fruit pulp as they feed, creating 

a cavity inside. The affected fruits initially grow faster and appear rounder than healthy ones. The larvae 

of the apple sawfly (Hoplocampa testudinea) tunnel small, curved galleries just beneath the fruit 

epidermis, causing the affected tissue to cork over. Later, the larvae burrow deeper into the fruit, 

consuming the core. The walls of the tunnels turn brown or black. 

There are different monitoring methods and techniques. Lima et al. (2020) described the detection 

techniques, which are based on usage of smart traps [4]. The weakness of smart traps is their static 

location. Another approach is mobile application. Christakakis et al. (2024) described the technologies 

and design of cross-platform mobile application, which can recognize plant diseases and insect pests. 

AI was developed using YOLOv8 achieving accuracy 0.70 mAP@0.50 [16]. The disadvantage of 

mobile application is characterized by two factors: (1) it is useful for non-professional farmers and 

infrequent usage; (2) it is not useful for large commercial fields or orchards, because the periodic manual 

monitoring is time-consuming. Crupi et al. (2025) proposed the idea to apply the swarm of autonomous 

nano-UAVs for pest control [17]. Considering the effectiveness and usability, the application of UAVs 

and UGVs is the most appropriate, because vehicles can move around monitoring location. However, 

the technology is not sufficiently developed at this moment, and it is impacted by different risks: crash 

possibility, precision of coordinates, sensitivity to weather conditions, etc. 

Conclusions 

1. The new dataset Caterpillar640 is presented in the article. The dataset contains the annotated natural 

images of caterpillars. The caterpillars are not classified on species (single-class dataset). The 

dataset is available in Kaggle under CC-BY4.0 license. 

2. Three middle-size YOLO models were compared using the dataset Caterpillar640. The best 

accuracy was shown by YOLOv8m model: 0.887 mAP:0.50 and 0.634 mAP:0.95.  

3. The caterpillars must be grouped into two categories: (1) caterpillars, which can be directly detected 

by video/photo camera; (2) caterpillars, which can be detected indirectly through disease symptoms 

or adult specimens. 

4. The future study can be continued by developing the dataset of insect pests actual to Latvia. 
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